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Abstract-A penny-shaped crack in the central part of a semi-infinite cylinder with a fixed end is
under consideration. The model of an interface crack with a contact ring near its tip is used. Similar
to the plane problem, the quasi-invariant of stress intensity factor combinations relative to the
contact ring width is obtained, and the energy release rate is given. By using Fourier and Hankel
integral transforms, the system of singular integral equations is obtained. This system is solved
numerically for different loads and material properties. The value of the quasi-invariant at the crack
tip and stress intensity factors at the corner edge of the cylinder are found.

I. INTRODUCTION

Much attention has recently been focused on the interface crack problem which is of great
importance in nonhomogeneous and composite materials investigation. Using classical
models of crack leads to the oscillatory singularity [see e.g. Williams (1959) ; Cherepanov
(1962); Erdogan (1963), (1965); Sih and Rice (1964); Rice and Sih (1965); England
(1965); Rice (1988)] when the crack tip is approached. The "contact zone" model [see e.g.
Comninou (1977), (1978) ; Dundurs and Comninou (1979)] makes it possible to avoid the
singularity of oscillatory type but, nevertheless, the length of contact zone for a "mode I"
crack is extremely small which leads to difficulties in numerical analysis. A simple way of
using the "contact zone" model for interface crack numerical analysis was proposed by
Loboda (1993), where the quasi-invariant with respect to contact zone length was found.

The goal of this work is to extend the results of Loboda (1993), obtained for the
interface crack plane problem, to the investigation of a penny-shaped crack settled in the
interface of two mediums. In the first part of the paper, the quasi-invariant is obtained for
the case of the axisymmetrical problem by the investigation of a simple problem for half­
spaces. Next this quasi-invariant is applied to the investigation of a semi-infinite cylinder
with a penny-shaped crack in the center of its fixed end.

2. A PENNY-SHAPED CRACK AT THE INTERFACE OF DISSIMILAR HALF-SPACES

Consider the axisymmetric problem of two dissimilar half-spaces, z > 0 and z < O.
containing an interfacial penny-shaped crack of radius b. The crack is loaded with uniform
pressure of intensity per). Let E and v be the Young's modulus and Poisson's ratio of the
upper half-space and lower half-space which is absolutely rigid. By introducing the zone of
frictionless contact of crack surfaces a < r < b near the crack tip, the boundary conditions
at the plane z = 0 can be written as

O"oo(r,O) = - P(r), O",Ar,O) = 0, r ~ a

uJr,O) = 0, u,(r,O) = 0, b ~ r ~ h

uo(r,O) = 0, O",Ar,O) = 0, a < r < b,r > h.
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The zones of frictionless contact for r > h are used for the convenience of numerical
analysis; this assumption is not a principal one, and according to St. Venant's principle
they will not influence the state of stress near the crack, provided h » b.

In order to obtain the solution of the problem, the following unknown functions are
introduced:

ql (r) = O'r:Cr, 0), (4)

Using the representations of the components of the stresses and displacements in terms of
the stress function <I>(r, z), and applying the Hankel transform, with respect to the variable
r, to the equation

(
a2 1 a a2 )2
-.- + - - + -,- <I>(r,z) = 0,
or2 r or az 2

we obtain an ordinary differential equation

(
d2 )2
-,-) - p2 <I>(p, z) = 0,
dz-

where

<I> (p, z) = rrIo (pr)<I>(r, z) dr.

The general solution of eqn (6) can be chosen in the form

<I>(p,z) = [A(p)+B(p)z]e-l'c.

(5)

(6)

The system of equations for the determination of A(p) and B(p) follows from eqn (4)
and, after Hankel transform application, can be written as

where

d 2 <I> )_ 1
v-----:;- + (l - v)r <I> = - il I (p)
dz~ p

d 2 <I> _-E
(1- 2v) - - 2(1- V)p2<1> = il2 (p),

dz 2 p(l +v)
(7)

We took into account that ql (r) = 0 for r < h u r > hand q2(r) = 0 for r > a.
By substituting A(p) and B(p) we obtain the function <I>(p, z), and by using the inverse

transform we can write the expressions for <I>(r, z) in terms of the unknown functions ql (r)
and ch(r). Then the expressions for normal stress O'CC and radial displacement u,. at z = 0
take the following forms:



where
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2ur (r,0) = -JI ~lj'71jryqj(y)dy LX' /j (PY)/I(pr) dp
I
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(8)

~'j=3-4v,

'711 = 2/l(1 - v) ,
I E

'712 = -1-' '721 = -'712, '722 = - -~?
-v I-v-

The inner integrals in eqn (8) can be written in closed form in terms of complete elliptic
integrals K(x) and E(x) (the first and second kind, respectively). Using the asymptotic
behavior of K(x) and E(x) as x -+ I allows us to extract Cauchy and logarithmic singu­
larities.

Next we introduce the function u == ouFjr+u)r and satisfy condition (I) and
u(r, 0) = O. The system of singular integral equations can be written in the form

(9)

where

I (2Vry) I (2~) I IMl(r,y)=~E -~ -~K -~ -~-~lnlr-yl,
r-y r+y r+y r+y r-y r+y

/l is the shear modulus, M] (r, y) E H, where H is a class of function which satisfies the
Holder condition.

The system (9) must be adjoined by the consistency conditions

(10)

where

The unknown functions qj(Y) are assumed to have integrable singularity at points (',
and dj and can be expressed as

qJ·(.V) = qj(y) ,>IV ) H (. I 2)qj\Y E , 1 = , .
JCv-cj)(dj- y)

Stress intensity factors K 1 and K 2 are defined as

(11 )
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Table I

I. K, K1 K

10- 1 -0.1144 0.6160 0.6532
10

,
-0.2517 0.5729 0.6489

10- 1 -0.3578 0.5134 0.6445
10- 4 -0.4155 0.4540 0.6330

(12)

and

(13)

Taking into account that the normal and shear stresses are defined in terms of the
unknown functions q/(y), and employing eqn (11), the stress intensity factors can be
rewritten in the form

(14)

Using the method described in Loboda and Sheveleva (1991), the system of singular
integral equations (9)-(10) is reduced to the system of linear algebraic equations which was
solved numerically.

The analysis of the numerical solutions shows that the main conclusions in this case
coincide with the results which have been received in the plane case. Specifically, it is noticed
that, similar to the plane problem (Loboda, 1993), the value of

(15)

where (J) = [4(I-v)2]/(3-4v) for ),E [/,*, AoL 1.* ~ 10- 2 is nearly invariable. Here
I. = (b - a)/b, and 1'0 is the value of parameter ), for which the normal stress in the contact
zone is compressive and there is no overlapping of crack faces.

The quasi-invariantness of parameter K was confirmed in the axisymmetrical case by
the numerical calculation of Kj, K 2 and K for various I. and v. Here some results for
b/h = 0.25, per) == Po = constant are shown. The dimensionless values of stress intensity fac­
tors f( = Kj(PoJb) and quasi-invariant K = K/(PoJb), which have been obtained for
v = 0.3 and v = 0.0283, are given in Tables 1 and 2. In the last column of Table 2 values of
N are shown (the order of the system of linear algebraic equations) which were necessary
for the determination of K, with an accuracy of 1%. The quasi-invariantness of K and
equation K] = 0 (for I. = 1. 0 ) give the possibility to determine the main parameter offracture
K 20 = K 2 as K 20 ~ K. On the other hand, according to Loboda (1993), we have the
following formulae for the energy release rate

Table 2

I. K, K1 K ,IV

10- 1 -0.2211 0.5748 0.6937 6
10- , -0.4509 0.4435 0.6787 14
10- 1 -0.5941 0.2689 0.6690 40

= 1.05 >,10 , -- 0.6653 0 0.6660 80
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rr(3-4v)
G = . K 2

16J.l(l-v)

rr(3-4v) )
and Go = 16J.l(1- v) K'2o, (16)

which allows us to apply an energy criteria of fracture for interface problems. Thus quasi­
invariantness of K can be used for the numerical solution of the practical problems.

An example of this parameter application is given in the next section.

3. THE CRACK ALONG THE FIXED END OF AN ELASTIC CIRCULAR CYLINDER

A semi-infinite right circular cylinder of radius R is partially bonded to an absolutely
rigid half-space. The penny-shaped crack of radius b is situated in the central part of the
lower end and the remaining contact area is perfectly bonded to the half-space. The lateral
surface of the cylinder r = R, is subjected to an arbitrary axisymmetric load

(17)

Let the frictionless contact of their surfaces take place in the neighbourhood of the crack
tip a < r < b. In such a way the boundary conditions at the plane z = 0 are as follows:

O"==(r,O) = 0 O",e (r, 0) = 0, r~a

ue(r,O) = 0, u,(r,O) = 0, b ~ r ~ R

u=(r,O) = 0, O",Ar, 0) = 0, a < r < b. (18)

Introducing the same unknown functions as above and using the technique based upon
Fourier and Hankel transforms, the normal stress O"ee and the function i1 at the plane z = 0
can be found as follows:

(19)

where

1 1
Ki/(r,y) = ~ + --In Ir-vl +M, (r,y)+2yLii (r, y)

r-y r+y .

Li/(r,y) = rkii(r,y,p)/D(p)dp

ku(r, y,p) = Hlj(y,p) In (r,p)+ H2,(y,p)/'2(r,p)

fer) = r"- [Iii (r, p)P2 (p) -li2 (r,p)P, (p)]/D(p) dp
Jo

(20)

The expressions for the functions Hu(Y, p), I,,cr, p), D(p) are given in the Appendix.
The kernels Lu(r, y) contain singularities as y ---> Rand r ---> R. These singularities can

be extracted by using the asymptotic behaviour of the integrand Lu(r, y) as p ---> Xi.

The singular part of kernels Lu(r, y), denoted by L;j (r, y), are obtained by considering
the asymptotic expressions of
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k,f (r,y,p) = ki/(r,y,p)/D(p)lp+Ye

DYe (p) = e2pR /(2n)

kfl (r,y,p) = e-
p

(2R;\) {2p2 (R-y)(R-r) +p[(1-4v)(R- y) + (3 -4v)(R-r)]
2y ry

+ (Sv 2
- SV+2)+~}

2pR

kr2(r,y,p) = _ e-
p
(2R;-J) {2p2 (R-y)(R-r)+p[(1-4V)(R-y)-(R-r)]

2y ry

AI" }+2v+--
2pR

k~'1 (r,y,p) = - e-
p

(2R-r-r) {2p2 (R- y)(R-r) +p[(3-4v)(R-r) -3(R- y)]
2~V ~

A21
}+(~4+6v)+ 2pR

e -p(2R--r-l"j { " An }
kf2(r,y,p) = - /. 2r(R-y)(R-r)-p[3(R-y)+(R-r)]+2+-=::"" ,

2y ry 2pR

where

AI] = 12v2 -16v+S, )'12 = Sv 2 -5v-l, A21 = Sv2 -II v+5, )'22 = Sv-6.

(21)

Using eqns (21) and performing the integration in eqns (20), the corresponding singular
part of the kernels becomes

I {SV 2 -12V+3 6(R-r) 4(R-r)2 )'11 }
Lrl(r,y)=-~ . , + " ,-~ln(2R-r-y)

2~ry 2R-I-J (2R-r-y)- (2R-r-y)" 2R

L x (I', ,.,) 1_ { 1-2v + 2(1 +2v)(R-r) _ 4(R-r)2 Ap }, ~-In (2R-r- y)
12. 2}7Y 2R-r-y (2R-r-y)2 (2R-r-y)3 2R

z I {-7+6V (10-4v)(R-r) 4(R-r)2 AOl }
LI(r, v) = -- + - 2-Rln(2R-r-y)

- . 2}7Y 2R-r-y (2R-r-y)2 (2R-r-y)3

I {-I 6(R-r) 4(R-r)2 Ao' }
L;2(r,y) = ----:= + J - 3 ~ln(2R-r-y),

2Jry 2R-r- y (2R-r- y)- (2R-r-y) 2R

Therefore, the singular integral equations can be written in the form

±11;1 fdl {.iL + ~il In [r-yl-2yL)j (I', y)+Ki/(r,y)}qj(y)dY = B;(r),
I~I 'i r-y r+y

i = 1,2, rE [c i , di],

where

(22)

(23)
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The system of integral equations given by eqn (23) must be adjoined by the consistency
conditions ur(b, 0) = 0 and q2(0) = O. By using the expression for radial displacement and
extracting the dominant part of the kernels, we obtain

(24)

where

{
b2 + y2 (2J bY) y + b (2y7;Y) b

2
+ y2 }

K3j(b'Y)=~lj b(b+y)K b+y -~b-E b+y +b(b+y)ln1r-yl +2yL3;(b,y)

L 3;(r,y) = J:c k 3j (r,y,p)/D(p)

k 3,(r,y,p) = H 1j (y,p)/3(r,p) + H 2j (y,p)/4 (r,p)

13(r,p) = Rp {RI I (pr)10 (pR) -rIo (pr)II (pR)} + 2(1- v)RI I (pr)II (pR)

14 (r,p) = Rp {rIo (pr)10 (pR) - RI1(pr)II (pR)} -rlo(pr)II (pR) - (1- 2v)RI I (pr)Io(pR).

Next we assume that q;(y) has integrable singularities at the points c;, d; and they can
be expressed as

q/y) = qj(y)/W/y),

where

Following the procedure outlined in Muskhelishvili (1953), we obtain the following
transcendental equation:

(3-4v)cos1HX-(Sv 2 -12v+3)+Sa+2Cl:2
= 0

giving the power of singularity Cl: and f3 = )' = 0.5.
New unknown functions q;(y) are introduced for numerical solutions (23)-(24)

(25)

where

qf(b) qf(R) (R-y)l! (y-b)'
/111 = (R_b)H1i' /112 = (R-b)'+li' 8 11 (y) = y-b ' 812 (y) = R-Y

q~(O)
/121 = --,

a

qHa)
/122 = --,

a R-y £5'821 = -. ' 822 (y) = -.:-.. ')' a-y
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Table 3

bjR K, K2 K K~ K~ K~

0.3 1.006 -0.5448 1.182 -0.1557 -0.2992 0.9725
0.5 1.054 -0.6409 1.273 -0.1831 -0.3112 1.0 II
0.7 1.203 -0.7894 1.483 -0.2256 -0.3576 1.162

9

7

3

~=0.7
R

o 0.3 0.5

r
R

0.7

Fig. I. Normal stress along the fixed end of the cylinder for various sizes of the contact zone.

By substituting eqn (25) into eqns (23) and (24), we reduce eqns (23) and (24) to the
system of singular integral equations in terms of tj;(y) and parameters flu'

Stress intensity factors K 1, K 2 and quasi-invariant K are defined by eqns (12), (13) and
(15). In addition, we introduce stress intensity factors Kf and K~ as follows:

K~ = lim [2(R-r)y<T,Ar,0).
/"--+R-O

In terms of parameters flu we can write

K~ = [2(R-bWfl'2

R Il2I K f JK 1 = 2 . ( [(1-2v)cos(7[0()+7-6v-40(2-v)+2oc-].
Sill 7[0()

(26)

Numerical results have been received for various values of v, band R. The dimensionless
values of stress intensity factors K; = K)(P? jb), K = K/(P? jb), K~ = K~ !(p? -/7;) and
KF = KF!(P?jb) are shown in Table 3. They have been calculated for A= 10-2, v = 0.3,
PI (z) = p? b(z - d), P 2 (z) = 0, d = 20, p? = constant. Figure 1 shows the variation of the
normal stress <Tee (r, 0) along the bonded zone for various values of blR. It must be pointed
out that the normal stress has singularities near the crack tip and the circumference of the
lower end of the cylinder, r = R, is the same as the function ql (r) and q2(r).

Using the value of K we can find the value of K = KP? -/7; and, due to the quasi­
invariantness of K, the values of K 20 ~ K and Go.
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APPENDIX

Given below are expressions which are needed in Section 3.

II " '1Hu(y,p) = - R dR-p- +2(1- v)]1, (py)K, (pR) + Rpl, (py)Ko(pR) -rRp-lo(pr)Ko(pR)-rplo(py)K, (pR)!

H" (y.p) = -p (2(1-v)I, (py)K, (pR)+ Rpl, (py)Ko(pR) -ypl" (pr)K, (pR)}

H,,(y,p) = -p{ -Rpl, (py)K" (pR)+ypl" (py)K, (pR))

D(p) = R'p'J6(pR)-[R'p' +2(I-v)]Ii(pR)

I" (r,p) = Rp{ Rplo(pr)lo(pR) -rpl, (pr)l, (pR) - 210 (pr)l, (pR))

lu (r,p) = Rp {3lo (JJr) I" (pR) - Rplo(pr)l, (pR) + rpl, (pr)I,,(pR)} -2(2 - v)l" (pr)l, (pR) - rpl, (pr)l, (pR)

I" (r,p) = Rp [Rplo(pr)lo(pR) -rpl, (pr)l, (pR) --2vl" (pr)l, (pR))

Idr,p) = Rp{(l + 2v)I,,(pr)I,,(pR) - Rplo(pr)l, (pR) +rpl, (pr)I,,(pR)} - rpl, (pr)l, (pR) - 21,,(pr)I, (pR).


